Limits of Spatial Resolution for Thermography and Other Non-destructive Imaging Methods Based on Diffusion Waves
نویسندگان
چکیده
In this work the measured variable, such as temperature, is a random variable showing fluctuations. The loss of information caused by diffusion waves in non-destructive testing can be described by stochastic processes. In non-destructive imaging, the information about the spatial pattern of a samples interior has to be transferred to the sample surface by certain waves, e.g., thermal waves. At the sample surface these waves can be detected and the interior structure is reconstructed from the measured signals. The amount of information about the interior of the sample, which can be gained from the detected waves on the sample surface, is essentially influenced by the propagation from its excitation to the surface. Diffusion causes entropy production and information loss for the propagating waves. Mandelis has developed a unifying framework for treating diverse diffusion-related periodic phenomena under the global mathematical label of diffusion-wave fields, such as thermal waves. Thermography uses the time-dependent diffusion of heat (either pulsed or modulated periodically) which goes along with entropy production and a loss of information. Several attempts have been made to compensate for this diffusive effect to get a higher resolution for the reconstructed images of the samples interior. In this work it is shown that fluctuations limit this compensation. Therefore, the spatial resolution for non-destructive imaging at a certain depth is also limited by theory.
منابع مشابه
FPGA-based of Thermogram Enhancement Algorithm for Non-destructive Thermal Characterization
متن کامل
Evaluation of Thermal Imaging in the Diagnosis and Classification of Varicocele
Introduction: A varicocele is the abnormal dilation and tortuosity of venous plexus above the testicles. The pattern of abnormal heat distribution in the scrotum can be detected through thermal imaging, which is a distant, non-contact, and non-invasive method. The aim of the present study is to detect and grade varicocele. Materials and Methods: This study was conducted on 50 patients with high...
متن کاملThermodynamic Limits of Spatial Resolution in Active Thermography
Thermal waves are caused by pure diffusion: their amplitude is decreased by more than a factor of 500 within a propagation distance of one wavelength. The diffusion equation, which describes the temperature as a function of space and time, is linear. For every linear equation the superposition principle is valid, which is known as Huygens principle for optical or mechanical wave fields. This li...
متن کاملDetermination of Fiber Direction in High Angular Resolution Diffusion Images using Spherical Harmonics Functions and Wiener Filter
Diffusion tensor imaging (DTI) MRI is a noninvasive imaging method of the cerebral tissues whose fibers directions are not evaluated correctly in the regions of the crossing fibers. For the same reason the high angular resolution diffusion images (HARDI) are used for estimation of the fiber direction in each voxel. One of the main methods to specify the direction of fibers is usage of the spher...
متن کاملApplication of Magnetic Resonance Imaging (MRI) as a safe & Application of Magnetic Resonance Imaging (MRI) as a safe & non-destructive method for monitoring of fruit & vegetable in postharvest period
To investigate and control quality, one must be able to measure quality-related attributes. Quality of produce encompasses sensory attributes, nutritive values, chemical constituents, mechanical properties, functional properties and defects. MRI has great potential for evaluating the quality of fruits and vegetables. The equipment now available is not feasible for routine quality testing. The ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 34 شماره
صفحات -
تاریخ انتشار 2013